Picture forming methods
![]() | |
Copper chloride crystallization picture: apple (Source: Uwe Geier, IBDF) |
The interpretation or evaluation step in the picture forming methods poses a particular methodical challenge. After all, there is a difference to the usual approach in the natural sciences. An acknowledged way of evaluation is based on the use of reference images (see Geier & Fritz 2009). This means that there were connections observed between image characteristics / picture types and characteristics of the sample (such as immature, mature). These linkages are partly well studied (e.g. on the aging of plant samples), partly adequate reference pictures for unknown samples must first be made. (The pictures shown here are intended to illustrate the three methods.)
The picture forming methods have been or are used for decades in the research by some manufacturers of complementary cures (e.g. Weleda, Wala, Hiscia). In addition, the methods have mainly been used by research facilities which worked on the development of biodynamic agriculture.
Since the nineties the picture forming methods gained a certain awareness, especially in German-speaking countries, by works by and with Dr. Ursula Balzer-Graf (later Graf). It was mainly about comparing organically and conventionally produced food.
In the past articles about the picture forming methods have especially been published in non-reviewed journals in German-speaking countries. As a result of the involvement of some universities (including Copenhagen, Kassel, Oldenburg, Pisa)a number of scientific articles have been published in the last years or are in preparation.
Copper chloride crystallization
As the most famous picture forming method, the copper chloride crystallization or biocryistallization can be named. It has been developed in the 20s of the last century by Ehrenfried Pfeiffer at Rudolf Steiner`s suggestion. Copper chloride crystallization images are produced by cristallizing the substance to be analysed in aqueous solution with chopper chloride on a glass plate at a specific climate. The crystallization ability of CuCl2 is specifically beeing influenced by the sample. The liquid is to be kept on a glass plate by a plastic ring with about 9 cm in diameter. The method of copper chloride crystallization varies slightly depending on the lab. Depending on the type of construction about 12 to 50 plates can be set in a crystallization cabin at a time. Decisive criteria are the ratio of sample and copper chloride, and a climate that allows a certain evaporation time (period between the formation of the first crystals until the last plate crystallizes out).
A detailed description of the technique of copper chloride crystallization can be found at Engqvist (1970), Andersen (2001) and Kahl (2006). Copper chloride crystallization images are weak greenish transparent. Good photos are therefore beeing made in the dark field.
Rising picture method
![]() | |
Rising picture: apple (Source: Uwe Geier, IBDF) |
The paper - cut into pieces of 14.5 x 17 cm is rolled into a cylinder and hold on top by a stainless clip . The paper cylinder is placed in a special glass bowl, a so-called Kaelin-bowl, with a circular gutter. The paper attracts the different solutions through the gutter. First, the substance to be analysed is allowed to raise in an aqueous solution (total 0.6 ml). After a drying phase the rise of silver nitrate follows (0.7 ml, 0.25%). After a further drying phase with 2 ml of 0.25% ferrous sulfate rise. The conditions are supposed to be about 20° C temperature and 60% relative humidity. The lighting is to be minimized during the rise. After drying, the images are exposed to diffused light for several hours to obtain their full color. A detailed description of methods can be found at Zalecka (2006). Zalecka (2006) was the first to document, standardize and characterize important factors of the rising picture method. The method was in-house validated for the differentiation of 2 wheat samples and 2 carrot juices (Zalecka 2006).
Circular picture method
The circular picture or shortly chroma method was developed in 1953 by Ehrenfried Pfeiffer as a quality test for soil, compost and organic substrates (Pfeiffer 1984).
![]() | |
Circular picture: pear (Source: Uwe Geier, IBDF) |
When using the chroma method for the assessment of foods, a round filter paper (e.g. Schleicher & Schuell 604) by 15 centimeters in diameter is placed on a petri dish. The paper is punched in the middle and a 2 x 2 centimeter paper wick, tightly rolled is put inside. The paper wick hoists two solutions out of a small bowl standing on the floor of the petri dish. First the paper is beeing impregnated with 0.5 ml of silver nitrate (0.5 %) to a radius of 4 centimeters and then it is left to dry for two hours. Then the sample extract (1.25 ml) is pulled up through a new wick from a new dish until a radius of 6 centimeters. Depending upon the sample type the extract is made by a breaking up with sodium hydroxide. When the extract is rising the paper is covered with a small container, such as a glass bowl, in order to increase the humidity. The temperature is supposed to be about 20° C and the relative humidity about 60 %. All steps should be carried out in a mainly darkened room, because the silver nitrate is sensitive to light. After drying, the images are exposed to diffused light for several hours to obtain their full color. Pfeiffer (1984) describes a slightly different method of producing the pictures.
Source: Dr. Uwe Geier, Forschungsring e. V., IBDF
References:
Andersen, J.-O. 2001: Development and application of the biocrystallization method. Ph.D. thesis. Royal Veterinary and Agricultural University, Copenhagen, Denmark
Balzer-Graf, U. 1997: Qualität – ein Er-Lebnis. Forschungsinstitut für Vitalqualität, Wetzikon (Schweiz), Eigenverlag
Balzer-Graf, U. 1999: Qualität für die Ernährung. In: Reents, H.J. & U. Mück. Alte und neue Dinkelsorten. Schriftenreihe Band 10 des Instituts für biologisch-dynamische Forschung, DarmstadtBangert, D. 1994: Zu den naturwissenschaftlichen Grundlagen des Chroma-Boden-Testes als bildschaffende Methode. Verlag Edition Zukunft, Barsinghausen
Engqvist, M. 1970: Gestaltkräfte des Lebendigen. Vittorio Klostermann Vlg. Frankfurt a.M.
Engqvist, M 1977: Die Steigbildmethode. Ein Indikator für Lebensprozesse in der Pflanze. Vittorio Klostermann, Frankfurt am MainFlückiger, H. 2000: Bildschaffende Methoden. Mistilteinn, Beiträge zur Mistelforschung, 2000/1. Hiscia, Arlesheim (CH)
Flückiger, H. 2001: Bildschaffende Methoden. Mistilteinn, Beiträge zur Mistelforschung, 2001/2. Hiscia, Arlesheim (CH)
Geier, U.; Fritz, J. 2008: Grundlagen der Bildinterpretation in den bildschaffenden Methoden Kupferchloridkristallisation und Steigbild. In Vorbereitung
Gelin, J.-P. 1987: Natürliche Alterungs- und experimentell gesteuerte Abbauprozesse organischer Substanzen in Fliessbildern. Elemente der Naturwissenschaft 1 / 46, Sondernummer. Naturwissenschaftliche Sektion am Goetheanum. Dornach (Schweiz)
Gelin, J.-P. 1999: Pulsatilla vulgaris und Pulsatilla pratensis. Eine vergleichende Studie zwischen Wildpflanze und Zuchtpflanze. Der Merkurstab, Heft 1, 52 Jg.
Haave, J. & B. Aalvik (o.Jg): Eine chromatographische Schnellmethode zum Nachweis von Fremdproteinen in Hackfleisch. Archiv für Lebensmittelhygiene, Sonderdruck, Heft 1, 31.Jg, Vlg. Schaper Hannover
Hassold-Piezunka 2003: Eignung des Chroma-Boden-Tests zur Bestimmung von Kompostqualität und Rottegrad. Dissertation Universität Oldenburg (DE)
Kahl, J. 2006: Entwicklung, in-house validierung und Anwendnung des ganzheitlichen Verfahrens Biokristallisation für die Unterscheidung von Weizen-, Möhren- und Apfelproben aus unterschiedlichem Anbau und Verarbeitungsschritten. Habilitation. Universität Kassel, Fachgebiet Ökologische Lebensmittelqualität und Ernährungskultur
Naturwissenschaftliche Sektion am Goetheanum (Hrsg.) 1987: Elemente der Naturwissenschaft 1 / 46, Dornach, Schweiz
Pfeiffer, E. 1959: Eine qualitative chromatographische Methode zur Bestimmung biologischer Werte. Lebendige Erde, Nr. 5/59, Darmstadt
Pfeiffer, E. 1984: Chromatography applied to quality testing. Bio-Dynamic Literature, Wyoming, Rhode Island
Strüh, J. 1987: Grundlegende Phänomene bei der Ausbildung der Steigbildformen. Bildtypen und pharmazeutische Prozesse. Elemente der Naturwissenschaft 1 / 46, Sondernummer. Naturwissenschaftliche Sektion am Goetheanum. Dornach (Schweiz)
Voitl, H. & Guggenberger, E. 1986: Der Chroma-Boden-Test. Orac-Verlag, Wien
Zalecka, A. 2006: Entwicklung und Validierung der Steigbildmethode zur Differenzierung von ausgewählten Lebensmitteln aus verschiedenen Anbausystemen und Verarbeitungsprozessen. Diss. Agr. Universität Kassel, Fachgebiet Ökologische Lebensmittelqualität und Ernährungskultur
Further literature:
Balzer-Graf, U., Balzer, F. (1991): Steigbild und Kupferchloridkristallisation - Spiegel der Vitalaktivität von Lebensmitteln -. In Meier-Ploeger, A. M., Vogtmann H., (Hrsg.): Lebensmittelqualität - ganzheitliche Methoden und Konzepte. Verlag C. F. Müller, Karlsruhe, 2. Aufl., S. 163-210
Geier, U. 2005: Pflanzenorganbildtypen in Kupferchloridkristallisation und Steigbild. Lebendige Erde, Heft 5, Darmstadt.
Geier, U., Seitz, L. (2006): Bildoptimum und Bildtypen im Rundfilterchromatogramm (Chroma) bei der Untersuchung von Pflanzen. Elemente der Naturwissenschaft 85
Mandera, R. (1995): Zur Metamorphose von Pflanzenorganen, Substanzqualitäten und Bildtypen im Steigbild. In: Tycho de Brahe Jahrbuch für Goetheanismus. Tycho Brahe Vlg. Niefern-Öschelbronn
Selawry, A. & Selawry, O. (1957): Die Kupferchloridkristallisation. Stuttgart , Gustav Fischer
Weibel, F.; Bickel, R.; Leuthold, S.; Alföldi, T.; Balzer-Graf, U. 2000: Are organically grown apples tastier and healthier? A comparative Study using conventional and alternativ methods to measure fruit quality. Acta Horticulturae 517, 417-427